

AN907 APPLICATION NOTE

COMPATIBILITY BETWEEN ST BOOT BLOCK AND INTEL SMARTVOLTAGE FLASH MEMORIES

by Patrick PIGNON

INTRODUCTION

Flash memory is proving to be a popular choice for the storage of information which is to be updated in-circuit at a later time after production. The larger capacity available and lower cost with the Flash technology compared to the similarly capable, but less dense, EEPROM technology has lead to Flash being used as code storage in many new applications.

One area which has given concern with Flash memory is the multiple sources for Flash memory devices, and the differing specifications giving incompatibilities preventing multiple sourcing of products.

SGS-THOMSON Boot Block Flash memories, 2 Mbit and 4 Mbit, are pin to pin replacements of the original Intel 2 Mbit and 4 Mbit Boot Block Flash memories. This application note addresses the compatibility issues between Flash memory devices from SGS-THOMSON and the same density Boot Block SmartVoltage memories from Intel.

COMPATIBLITY ISSUES

In general compatibility between two similar Flash memory devices can be determined by examining the following topics:

Device size and organisation:

Memory sector addresses and size

Package and pin out configuration

Programming issues:

Programming Command Sequences

Device Identification codes

Boot Block Write Protection

Memory Write Protection

The read characteristics are well standardized and seldom generate compatibility issues.

DEVICE SIZE AND ORGANISATION

The Flash memory devices covered in this Application Note are the 2 Mbit and 4 Mbit, with Boot Block protect for the M28Fxxx family and Boot Block unprotect for the M28Wxxx family (2.7V to 3.6V read voltage). The published sales types for these devices are shown in Table 1.

These devices have the same density and are organised in the identical way to the Intel SmartVoltage equivalent parts. The addresses and the size of the blocks for the different product versions are described in Figures 1 to 4.

February 1997 1/14

Table 1. ST vs Intel SmartVoltage Sales Types

		Package		ST		
Size	Org.		Intel SmartVoltage	5V \pm 10% Read, Protected Boot Block	2.7V to 3.6V Read, Unprotected Boot Block	
	(x8)	TSOP40	E28F002BV-T	M28F211	M28W231	
			E28F002BV-B	M28F221 ⁽¹⁾	M28W241 ⁽¹⁾	
	(x8, x16)	TSOP48	E28F200CV-T	M28F210 ⁽¹⁾		
2Mbit			E28F200CV-B	M28F220		
	(x8, x16)	SO44	PA28F200BV-T	M28F210		
			PA28F200BV-B	M28F220		
			TB28F200BV-T	M28F210		
			TB28F200BV-B	M28F220		
	(x8)	TSOP40	E28F004BV-T	M28F411	M28W431	
			E28F004BV-B	M28F421 ⁽¹⁾	M28W441	
4Mbit			TE28F004BE-T	M28F411	M28W431	
			TE28F004BE-B	M28F421 ⁽¹⁾	M28W441	
	(x8, x16)	TSOP48	E28F400CV-T	M28F410	M28W430 ⁽¹⁾	
			E28F400CV-B	M28F420	M28W440	
			TE28F400CE-T	M28F410	M28W430 ⁽¹⁾	
			TE28F400CE-B	M28F420	M28W440	
	(x8, x16)	SO44	PA28F400BV-T	M28F410		
			PA28F400BV-B	M28F420		
			TB28F400BV-T	M28F410		
			TB28F400BV-B	M28F420		

Note: 1. Contact your local SGS-THOMSON Product Marketing for availability of the ST devices.

In addition to the generic ST sales type mentioned in Table 1, the speed, package and temperature range must be specified to generate a commercial product reference (e.g. M28F211-120N1). For more detailed information on the subject please refer to the specific product datasheet or to the ST memory shortform.

Figure 1. Memory Map, Byte-wide Addresses, compatible with Intel E28F002BV

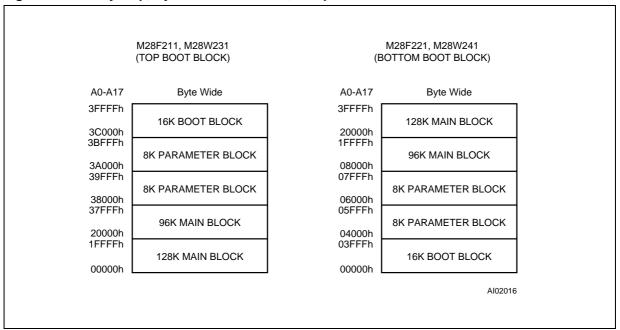


Figure 2. Memory Map, Byte-wide Addresses, compatible with Intel 28F200BV and 28F200CV

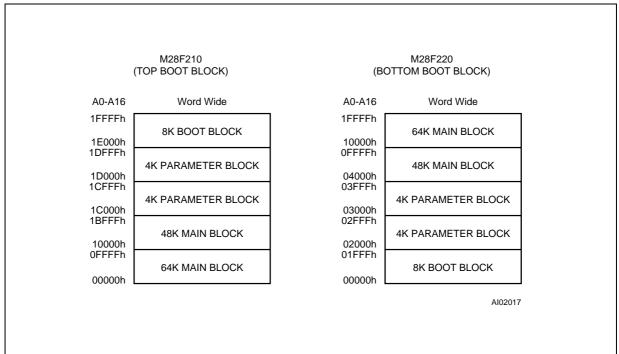


Figure 3. Memory Map, Byte-wide Addresses, compatible with Intel 28F004BV and 28F004BE

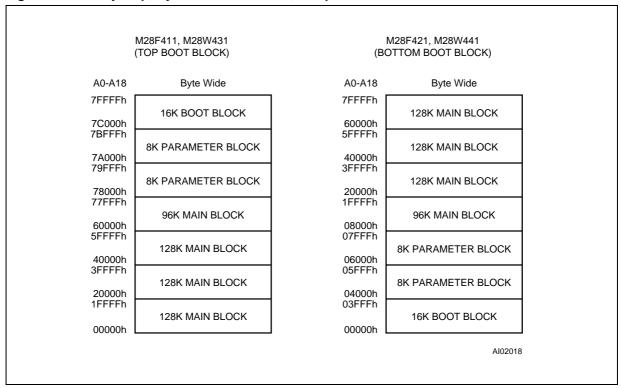


Figure 4. Memory Map, Byte-wide Addresses, compatible with Intel 28F400CV, 28F400CE and 28F400BV

A0-A17 Word Wide
3FFFFh 64K MAIN BLOCK
2FFFFh 64K MAIN BLOCK
1FFFFh 64K MAIN BLOCK
0FFFFh 48K MAIN BLOCK 04000h
03FFFh 03000h 4K PARAMETER BLOCK
02FFFh 02000h 4K PARAMETER BLOCK
01FFFh 8K BOOT BLOCK

PACKAGING AND PIN OUT CONFIGURATION

The 2 Mbit and 4 Mbit Boot Block are offered in three different types of packages: TSOP40, TSOP48 and SO44. As shown in Figures 5 to 10, the SGS-THOMSON and Intel SmartVoltage memories are equivalent in terms of pin-out apart from the function of one pin.

It can been seen that the pin marked as WP# for the Intel SmartVoltage types is given either as DU (Do Not Use) or NC (Not Connected) for the SGS-THOMSON part. The WP# function on the Intel SmartVoltage part is used as an optional Boot Block protection selector, this will be referred to in the next section on programming.

Despite this DU specification, this pin can accept any voltage from 0V to $V_{CC}+0.5V$ without changing the memory functionality, thus making it easy to adapt the Boot Block products to SmartVoltage designs.

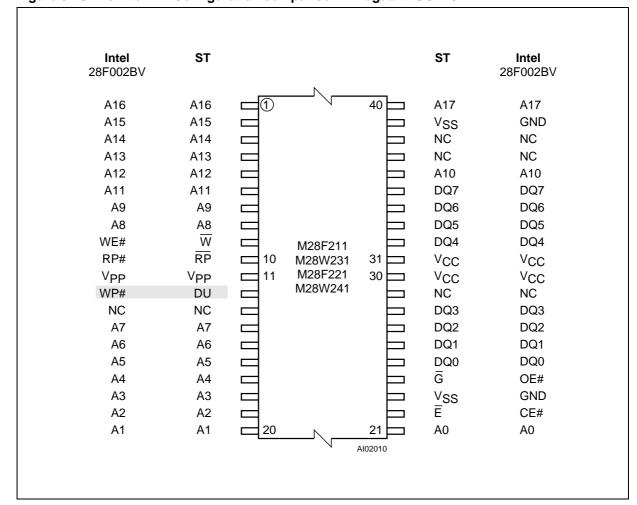


Figure 5. ST vs Intel Pin Configuration comparison 2 Megabit TSOP40

Figure 6. ST vs Intel Pin Configuration comparison 2 Megabit TSOP48

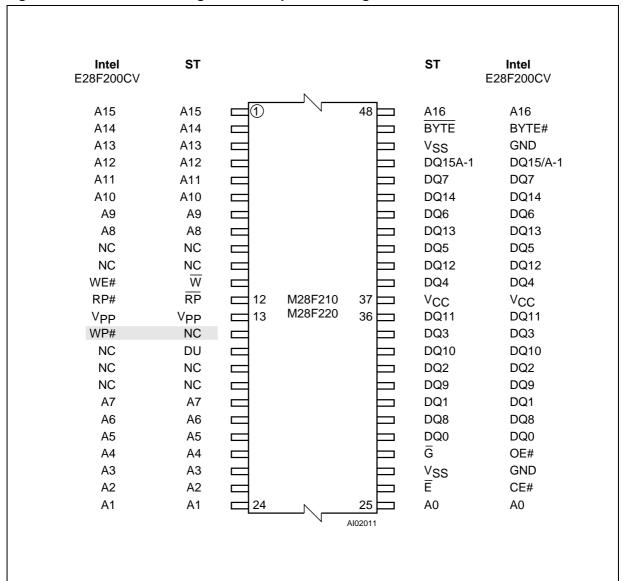
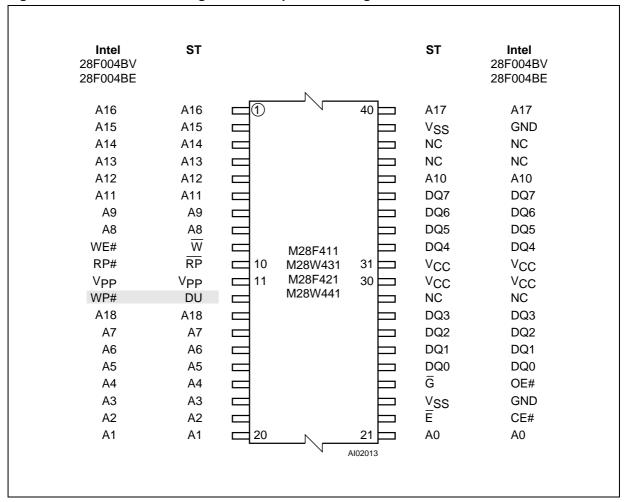



Figure 7. ST vs Intel Pin Configuration comparison 2 Megabit SO44

Intel PA28F200	ST			ST	Intel PA28F200
Vpp	Vpp		44	RP	RP#
WP#	DU	 2	43	\overline{W}	WE#
NC	NC	□ 3	42 🗀	A8	A8
A7	A7	□ 4	41 🗀	A9	A9
A6	A6	□ 5	40	A10	A10
A5	A5	□ 6	39 🗖	A11	A11
A4	A4	□ 7	38	A12	A12
А3	А3	⊟ 8	37	A13	A13
A2	A2	□ 9	36	A14	A14
A1	A1	<u></u> 10	35 🗖	A15	A15
A0	A0	<u></u> 11	M28F210 34	A16	A16
CE#	Ē	<u></u> 12	M28F220 33	BYTE	BYTE#
GND	V_{SS}	<u></u> 13	32	V_{SS}	GND
OE#	G	<u></u> 14	31 🗖	DQ15A-1	DQ15/A-
DQ0	DQ0	<u></u> 15	30	DQ7	DQ7
DQ8	DQ8	□ 16	29 🗀	DQ14	DQ14
DQ1	DQ1	<u></u> 17	28	DQ6	DQ6
DQ9	DQ9	<u></u> 18	27	DQ13	DQ13
DQ2	DQ2	<u></u> 19	26	DQ5	DQ5
DQ10	DQ10	□ 20	25 🗀	DQ12	DQ12
DQ3	DQ3	<u></u> 21	24 🗀	DQ4	DQ4
DQ11	DQ11	= 22	23 🗖	VCC	VCC
			Al02012		

Figure 8. ST vs Intel Pin Configuration comparison 4 Megabit TSOP40

Intel ST ST Intel E28F400CV E28F400CV TE28F400CE TE28F400CE 1 A15 A15 48 A16 A16 A14 A14 BYTE BYTE# GND A13 A13 V_{SS} A12 A12 DQ15A-1 DQ15/A-1 A11 A11 DQ7 DQ7 A10 A10 DQ14 DQ14 DQ6 Α9 Α9 DQ6 DQ13 DQ13 Α8 **A8** NC NC DQ5 DQ5 NC NC DQ12 DQ12 $\overline{\mathsf{W}}$ WE# M28F410 DQ4 DQ4 M28F420 RP# $\overline{\mathsf{RP}}$ 12 37 $^{\text{VCC}}$ VCC M28W430 13 36 V_{PP} ۷рр DQ11 DQ11 M28W440 WP# DQ3 DQ3 NC DQ10 NC DU DQ10 NC NC DQ2 DQ2 A17 A17 DQ9 DQ9 Α7 Α7 DQ1 DQ1 Α6 Α6 DQ8 DQ8

DQ0

Vss

G

Ē

Α0

AI02014

DQ0

OE#

GND

CE#

Α0

Figure 9. ST vs Intel Pin Configuration comparison 4 Megabit TSOP48

A5

A4

АЗ

Α2

Α1

A5

Α4

А3

Α2

Α1

Figure 10. ST vs Intel Pin Configuration comparison 4 Megabit SO44

Intel PA28F400	ST			ST	Intel PA28F400
V _{PP}	V _{PP}		44	RP	RP#
WP#	DU	<u></u> 2	43	\overline{W}	WE#
A17	A17	□ 3	42	A8	A8
A7	A7	□ 4	41	A9	A9
A6	A6	□ 5	40	A10	A10
A5	A5	□ 6	39	A11	A11
A4	A4	□ 7	38	A12	A12
A3	А3	□8	37	A13	A13
A2	A2	□ 9	36	A14	A14
A1	A1	□ 10	35	A15	A15
A0	A0	□ 11	M28F410 34	A16	A16
CE#	Ē	— 12	M28F420 33	BYTE	BYTE#
GND	V _{SS} G	— 13	32	V_{SS}	GND
OE#	G	<u></u> 14	31	DQ15A-1	DQ15/A-
DQ0	DQ0	<u></u> 15	30	DQ7	DQ7
DQ8	DQ8	□ 16	29 🗀	DQ14	DQ14
DQ1	DQ1	<u></u> 17	28	DQ6	DQ6
DQ9	DQ9	<u></u> 18	27	DQ13	DQ13
DQ2	DQ2	— 19	26	DQ5	DQ5
DQ10	DQ10	□ 20	25	DQ12	DQ12
DQ3	DQ3	= 21	24	DQ4	DQ4
DQ11	DQ11	<u>22</u>	23	VCC	VCC
			AI02015		

PROGRAMMING ISSUES

Programming Command Sequences

The ST Boot Block 2 Mbit and 4 Mbit Flash memories and the Intel SmartVoltage Flash memories use exactly the same command code sequences to control the programming and erasure of the flash blocks. This means that the algorithm used to program or erase the device are the same.

Due to the necessity for programming equipment to correctly identify the memory type and manufacturer, the devices return the appropriate Device Identification codes as shown in Table 2. When programming in-circuit, these codes should be selected according to the device used.

Both devices use the VPP pin to enable the programming operations. The ST device requires a standard $12V \pm 5\%$ or $\pm 10\%$ programming voltage applied to the V_{PP} pin. However the Intel SmartVoltage part allows programming at a voltage of 12V ± 5% or 5V ± 10% for systems where 12V for programming is not available. Thus for commonality in using the alternative sources, it is recommended to use the 12V programming voltage (for example by using the ST662A DC/DC 5V/12V converter when the 12V is not available on the board).

Table 2. Device Identification Codes

Size, Org	ST ⁽¹⁾		Intel SmartVoltage (2)		
& V _{CC} /V _{PP}	Device	Code	Device	Code	
2Mbit (x8)	M28F211	E4h	28F002BV-T	7Ch	
5V/12V	M28F221	E8h	28F002BV-B	7Dh	
2Mbit (x8)	M28W231	E5h	28F002BV-T	7Ch	
3V/12V	M28W241	E9h	28F002BV-B	7Dh	
2Mbit (x8, x16)	M28F210	E0h	28F200CV-T/28F200BV-T	2274h	
5V/12V	M28F220	E6h	28F200CV-B/28F200BV-B	2275h	
4Mbit (x8)	M28F411	F6h	28F004BV-T	78h	
5V/12V	M28F421	FEh	28F004BV-B	79h	
4Mbit (x8)	M28W431	F7h	28F004BV-T	78h	
3V/12V	M28W441	FFh	28F004BV-B	79h	
4Mbit (x8, x16) 5V/12V	M28F410	F2h	28F400CV-T/28F400CE-T/28F400BV-T	4470h	
	M28F420	FAh	28F400CV-B/28F400CE-B/28F400BV-B	4471h	
4Mbit (x8, x16)	M28W430	F3h	28F400CV-T/28F400CE-T/28F400BV-T	4470h	
3V/12V	M28W440	FBh	28F400CV-B/28F400CE-B/28F400BV-B	4471h	

Notes: 1. Manufacturer Code = 20h

Manufacturer Code = 89h

4

BOOT BLOCK WRITE PROTECTION

The protection of the Boot Block against erroneous write sequences is an important consideration for applications such as automotive applications and computer BIOS (for example this gives a "permanent" base from which to execute and update Plug and Play code).

The only major difference between the two manufacturer's devices is the use of an additional option for programming the Boot Block with the Intel SmartVoltage devices and the associated changes to certain voltage levels.

For the ST 5V/12V (i.e. M28Fxxx) products (and the equivalent Intel non-SmartVoltage technology devices) unlocking the Boot Block area is made by setting the \overline{RP} pin = V_{HH} (V_{HH} is specified at 11.4V min and 12.6V max) with V_{PP} greater than or equal to V_{PPH} is specified at 11.4V min and 12.6V max).

Setting $\overline{RP} = V_{IH}$ (V_{IH} is specified at 2.0V min and V_{CC} +0.5V max) will lock the Boot Block, preventing any further modification, unless the area is unlocked again. This is summarized in Table 3.

For the ST 3V/12V products (i.e. M28Wxxx) the unlocking of the Boot Block area is not needed as these products are delivered with the Boot Block unprotected. The Boot Block as well as the other memory Blocks are protected when V_{PP} = V_{PPL} (V_{PPL} is specified at 6.5V max). They are unprotected when V_{PP} = V_{PPL}.

The Intel's SmartVoltage devices provide an additional method to unlock the Boot Block using a TTL level signal on WP#. When WP# = V_{IL} the Boot Block is locked and any program or erase operation will result in an error indication in the status register. All other blocks remain unlocked in this condition and can be programmed or erased normally. When WP# = V_{IH} , the Boot Block is unlocked and can be programmed or erased. This feature is overidden and the Boot Block unlocked when $\overline{RP} = V_{HH}$.

For compatibility issues, it is recommended that the WP# input is held at $\leq V_{IL}$, allowing programming at $V_{PP} = 12V$ and using RP in the normal way.

Nevertheless, the 2 Mbit and 4 Mbit Boot Block Flash memory devices from SGS-THOMSON can withstand any voltage from 0V to V_{CC} +0.5V on the DU pin (positioned at the location of the Intel SmartVoltage WP# pin for the TSOP40 and SO44 packages) without any change in functionality.

MEMORY WRITE PROTECTION

Protection from erroneous writes to the main memory block is achieved by taking V_{PP} to V_{PPL}. When this condition is met, any attempt to modify data in the flash memory (for example, using write or erase commands) will return an error indication in the status register.

The primary difference between the ST Flash memory and the SmartVoltage is a result of the requirement for the SmartVoltage devices to program and erase at 5V. The requirement for programming and erasing at 12V was for V_{PP} to be at V_{PPL} for write protection. However in order for the SmartVoltage to operate at the lower voltage range, the V_{PP} protection level has been reduced V_{PPLK} = 1.5V max.

In addition, bit 3 of the Status Register which indicates V_{PP} status indicates a low V_{PP} condition if the V_{PP} voltage drops below V_{PPH} , specified at 4.5V min or 11.6V min for SmartVoltage. For SGS-THOMSON 12V Programming devices, and Intel non-SmartVoltage devices, the V_{PP} status bit will indicate a low V_{PP} condition for the voltage of V_{PP} below V_{PPH} , specified at 11.4V min.

Applications designed to use both manufacturers' devices should accommodate switching of V_{PP} to 12V for programming and erasing and to 0V for total memory protection.

Table 3. Memory Protection

Programming Voltage	RP	Block Protection
V_{PPL}	V _{IH}	All Blocks Locked
X	V _{IL}	All Blocks Locked (Reset condition)
V_{PPH}	V _{HH}	All Blocks Unlocked
V _{PPH}	V _{IH}	Boot Block Locked

Note: $X = V_{PPH}$ or V_{PPL} .

CONCLUSION

The ST Boot Block products are pin to pin replacements of the Intel Boot Block products. With some design precautions described in this Application Note, they are also pin to pin replacements of the equivalent Intel Smartvoltage products. The essential requirement to ensure this compatibility is to mantain the availability of 12V on the VPP pin for programming and erasing.

Warning

In all cases it is recommended to make a direct comparison of the AC and DC characteristics as shown in the corresponding datasheets in order to be sure that either memory is compatible with your design.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - All Rights Reserved

 ${\small \circledR}$ Intel is a registered trademark of Intel Corp.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.